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1. Introduction

We present an update on the nucleon isovector electromagnetic and axial vector form factors

calculated using the HISQ-on-Clover lattice formulation, which uses Wilson clover fermion action

for valence quarks and 2+1+1 flavors HISQ ensembles generated by the MILC collaboration [1].

The details of the lattice calculation of form factors can be found in Ref. [2, 3], and details of

the lattice parameters for the 14 ensembles used to study form factors in the published paper on

charges [4]. To control excited state contamination (ESC), we include up to 3-states in the spectral

decomposition of the 3-point correlator [5].

Compared to the previous analysis of the axial vector form factors [3], several updates have

been made. First, ensembles a09m310 and a09m220 now have higher statistics, an addtional mea-

surement with τ/a = 16 in the 3-point correlator, and momentum insertion, qqq = 2πnnn/L, with

nnn2 ≤ 10. Intermediate results with this update can be found in Ref. [5]. Second, all ensembles now

use the truncated solver with bias correction. Third, the two physical mass ensembles are updated:

higher statistics for a06m135 and new a09m130W data with a wider smearing at the source and

sink to improve the overlap with the ground state. Fourth, a06m310W and a06m220W data with a

wider smearing are included. Fifth, added a15m310 at coarser lattice spacing a ≈ 0.15 fm and pion

mass Mπ ≈ 320. Lastly, we investigate finite volume effects by including three ensembles with

different volumes but the same lattice spacing a = 0.12 fm and pion mass Mπ = 220 MeV.

2. Electromagnetic Form Factors

Lorentz covariant decompsition of the matrix element of the electromagnetic vector current Vµ

between nucleon states can be written in terms of Dirac, F1, and Pauli, F2, form factors as:

〈
N(ppp f )|Vµ(qqq)|N(pppi)

〉
= uN(ppp f )

(
F1(Q

2)γµ +σµν
F2(Q

2)

2MN

)
uN(pppi), (2.1)

where uN(ppp) is the nucleon spinor, MN is the nucleon mass, and Q2 = ppp2
f − (E − MN)

2 is the

Euclidean four-momentum square transferred. The analysis presented here is carried out in terms

of the Sachs electric and magnetic form factors GE and GM:

GE(Q
2) = F1(Q

2)−
Q2

4M2
N

F2(Q
2) , GM(Q2) = F1(Q

2)+F2(Q
2) . (2.2)

which are commonly used to express the Rosenbluth ep cross-section. Lattice data for GE and GM

from all 14 calculations are summarized in Figs. 3 and 4, and compared with the Kelly parameter-

ization for the isovector combination p− n and with dipole fit using CODATA2014 [6] value for

the proton charge radius,
√

〈r2
E〉= 0.875(6) fm.

Our final results for GE(Q
2) are taken from the ReV4 component of the current versus ImVi

averaged over i = 1,2,3. A comparison of the two estimates is shown in Fig. 1 for the a06m135

ensemble along with examples of the pattern of ESC. The lack of a plateau in the matrix element

of ImVi gives rise to a much larger error than in ReV4. The error and difference increases as Q2,

a and Mπ decrease. The reasons for these (discretization errors, ESC, finite volume effects) are not

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
1
2
3

Nucleon Form Factors Yong-Chull Jang

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

G
E
/
g
V

Q2 [GeV2]

Kelly
Im Vi
Re V4

a06m135

τ :∞ 16 18 20 22

0.9

1.0

1.1

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

a06m135 , tskip = 6 ,n
2 = 1

τ :∞ 16 18 20 22
−0.5

0.0

0.5

1.0

1.5

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

a06m135 , tskip = 6 ,n
2 = 1

τ :∞ 16 18 20 220.4

0.5

0.6

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

a06m135 , tskip = 6 ,n
2 = 8

τ :∞ 16 18 20 22
−0.5

0.0

0.5

1.0

1.5

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

a06m135 , tskip = 6 ,n
2 = 8

Figure 1: (left) Comparison of GE(Q
2) from ImVi versus ReV4. (middle) Excited state effects in

matrix element of ReV4 and (right) ImVi. All data are from the physical mass ensemble a06m135.

understood. For present, we take 〈r2
E〉 from ReV4 since precise values of GE at small Q2 are needed

to determine the electric charge radius defined as 〈r2
E〉=−6 d

dQ2
GE (Q

2)
gV

∣∣
Q2=0.

The continuum-chiral-finite-volume (CCFV) fits for the electric and magnetic charge radii,

〈r2
E〉 and 〈r2

M〉, and magnetic moment, µ , are carried out including the leading order terms that

describe lattice artifacts due to finite lattice spacing a, and variation with pion mass Mπ and finite

volume parameter MπL using expressions taken from Refs. [7, 8, 9].

〈r2
E〉(a,Mπ ,L) = cE

1 + cE
2 a+ cE

3 ln(M2
π/λ 2)+ cE

4 ln(M2
π/λ 2)exp(−MπL) , (2.3)

〈r2
M〉(a,Mπ ,L) = cM

1 + cM
2 a+ cM

3 /Mπ + cM
4 /Mπ exp(−MπL) , (2.4)

µ(a,Mπ ,L) = c
µ
1 + c

µ
2 a+ c

µ
3 Mπ + c

µ
4 Mπ

(
1−

2

MπL

)
exp(−MπL) . (2.5)
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Figure 2: CCFV fits (pink band) plotted versus the variable they are most sensitive to. Fits to 〈r2
E〉

(left) and 〈r2
M〉 (middle), both in fm2, highlight the non-analytical dependence on Mπ given in

Eqs. (2.3) and (2.4). (right) CCFV fit for magnetic moment 〈µ〉 is plotted versus a. In contrast, the

gray band in each panel is the result of fits versus the single variable defining the x-axis.

We first analyze the Q2 dependence of form factors for each of the 14 calculations using the

dipole and model independent z-expansions. Then recognizing that the two pairs, a06m220(W )

and a06m310(W ), share the same gauge ensemble but only the smearing widths are different, we

construct 11-point data by averaging the 〈r2
M〉, 〈r2

M〉 and µ values from the two smearings assuming
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full correlations, and dropping the a09m130 data because the bias correction is not available for

Q2 6= 0. We further construct two 10-point data sets by excluding (i) the coarsest lattice spacing

a15m310 or (ii) the smallest volume a12m220S data. The CCVF fits for getting the final 〈r2
E〉, 〈r

2
M〉,

and µ , are then performed for for each of the data sets: 14-point, 11-point, 10-point and 10∗-point

and for the dipole and various z-expansion analysis of Q2 behavior. In these fits, the 14, 11, 10 or

10∗ data points are treated as uncorrelated.

The variation of 〈r2
E〉 between the 14 calculations and between dipole and z-expansion analysis

is small as shown in Fig. 3. The figure also shows the results from the 14-, 11-, 10-, and 10∗-point

CCFV fits. We take the central value for 〈r2
E〉 from the 11-point fit with the z3+4 truncation of

the z-expansion. This is given in Table 1. Note that zi+4 fits include the four sum rule constraints

imposed to ensure that GA,E,M(Q2)→ 0 as 1/Q4 for large Q2. For 〈r2
M〉 and µ , we take the central

values from z3 as the z3+4 fits are unstable. The reason GM fits are less stable is the point GM(0),

which would pin the fit at Q2 = 0 is not calculable from lattice simulations. The CCFV fits for

〈r2
E〉, 〈r

2
M〉, and 〈µ〉 are shown in Fig. 2 versus the variable they vary the most with.

The magnetic moment µ from either the dipole or the z-expansion analysis is about 15%

smaller than the experimental value µexp = 4.7058 as can be inferred from the data for µexpGE/GM

plotted in Fig. 4. Since the ratio GE/GM is insensitive to a or Mπ , the low value of µ obtained is not

simply explained by the less stable fits to GM versus Q2. Also, the size and quality of the ESC in

ReVi (averaged over i = 1,2 as these two are related by the lattice rotational symmetry) is similar

to ReV4 shown in Fig. 1, and the 2- and 3∗-state fits give stable estimates of the τ → ∞ value.
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Figure 3: (left) Isovector electric form factor Gu−d
E (Q2)/gV compared to the Kelly parameteriza-

tion, and dipole fit with CODATA value of 〈rE〉. The straight lines represent the slope at Q2 = 0

for each fit. The yellow inner band and cyan outer band are the statistical and systematical errors

in the z-expansion. (right) Values of 〈r2
E〉 from the CCFV fits for the 14 calculations, each with the

dipole and z-expansion analysis of the Q2 behavior.

3. Axial Form Factors

The form factor decomposition of the matrix element of the isovector axial-vector current

3
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Figure 4: (left) Data for the isovector magnetic form factor Gu−d
M (Q2). To allow a visual comparison

of the slope at Q2 = 0, different values of µ = GM(0) are shifted to a common point taken to be the

dipole result. (right) Data for the ratio µexpGE/GM with µexp = 4.7058.

between nucleon states is:

〈
N(ppp f )|Aµ(qqq)|N(pppi)

〉
= uN(ppp f )

(
GA(Q

2)γµ +qµ
G̃P(Q

2)

2MN

)
γ5uN(pppi) . (3.1)

We follow the same procedure for controlling the ESC in the matrix elements and for the extraction

and CCFV fits to the axial charge radius as for the electromagnetic form factors described in Sec. 2.

The CCFV fit for 〈r2
A〉 is made using

〈r2
A〉(a,Mπ ,L) = cA

1 + cA
2 a+ cA

3 M2
π + cA

4 M2
π exp(−MπL) , (3.2)

and results for the z3+4 analysis are shown in Fig. 5. All the data versus Q2 are shown in Fig. 6

(left), and the variation versus different fit ansatz is shown in Fig. 6 (right). The central values are

taken from the 11-point CCFV fit and results for the dipole and z3+4 analysis are given in Tab. 1.
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Figure 5: CCFV fits for the axial charge radius 〈r2
A〉 in fm2. The three panels show the fits versus

the lattice spacing (left) pion mass (middle) and finite box size parameter MπL (right), with the

other variables in Eq. (3.2) set to their physical values.

4. Discussion and Outlook

Results for the charge radii
√
〈r2

E〉,
√

〈r2
M〉,

√
〈r2

A〉 and magnetic moment µ from isovector

electromagnetic and axial form factors are summarized in Tab. 1. The z-expansion results have
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Figure 6: (left) Data for the axial-vector form factor Gu−d
A (Q2)/gA. The straight lines show the

slope at Q2 = 0 for the dipole and z-expansion fits. The dashed-dotted line is the dipole fit with the

phenomenological estimate MA = 1.026. (right) The values of 〈r2
A〉 from the four CCFV fits, and

from the 14 calculations with both the dipole and z-expansion analysis of the Q2 behavior.

larger errors in all cases, and the dipole results are consistant with these within statistical errors.

Compared to the previous works [3, 5], the errors in the dipole estimates are smaller with increased

statistics and ensembles, but only in rE for the z-expansion. Part of the reason is that in Refs. [3, 5],

the z-expansion results were averaged: z2 and z3 for 〈r2
M〉 and µ , and z2+4 and z3+4 for 〈r2

E〉 and

〈r2
A〉. As a result, these errors quoted were dominated by the smaller error points z2 or z2+4, while

the new results are taken from the higher order truncation, z3 or z3+4, that have larger errors. The

more pressing challenge with the z-expansion analysis is to show stability with respect to the order

of the truncation.

We now also quote a systematic error from the CCFV fits. For 〈r2
E〉 and 〈r2

M〉, the dominant

variation is with respect to M2
π , so we take it to be the difference between the two physical pion

mass ensemble results. For the magnetic moment, the largest variation is with a, so we take the

difference between the CCFV fit result and the average of the five finest lattice, a≈ 0.06 fm, results.

These conservative estimates will be refined in future work.

Adding the statistical and systematic errors in quadrature, our lattice estimates for rE are con-

sistent with the Kelly parameterization of the experimental data for the isovector combination.

Clearly, the current precision in the lattice data is not sufficient to address the proton charge radius

puzzle. The lattice estimate of the magnetic charge radius rM has an even larger error. The magnetic

moment µ from our calculation undershoots the experimental value by 15%, with the a ≈ 0.06 fm

data pulling down the CCFV fit. The range of parameter values analyzed in this work leaves open

the possibility that the finite volume effects are significant, especially at the lowest Q2 value [10].

For the future, better control over extrapolation to the physical limit would include a modified

CCFV fit that includes higher order corrections from an effective theory such as HBχPT [9], and

by combining this fit with the Q2 behavior as discussed in Ref. [11].

The axial charge radius rA is smaller than the value extracted from from neutrino scattering

data, rA = 0.666(17) fm, from electroproduction, rA = 0.639(10) fm, and from a reanalysis of

deuterium data, rA = 0.68(16) fm. In Ref. [3], we had pointed out a problem with the lattice

estimates of the axial GA, induced pseudoscalar G̃P, and pseudoscalar GP form factors: while the

5
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PCAC relation is satisfied at the correlator level, it is not satisfied by the form factors. This problem

is under investigation.

rE [fm] rM [fm] µ rA [fm] MA [GeV]

This work
z-exp. 0.804(42)(98) 0.736(166)(86) 3.99(32)(17) 0.481(58)(62) 1.42(17)(18)
dipole 0.772(10)(8) 0.722(23)(41) 3.96(10)(12) 0.505(13)(6) 1.35(3)(2)

Jang et. al.[5]
z-exp. 0.83(9) 0.82(10) 3.47(36) 0.50(6) 1.36(17)
dipole 0.79(3) 0.77(4) 3.72(23) 0.51(2) 1.34(6)

Gupta et.al.[3]
z-exp. 0.46(6) 1.48(19)
dipole 0.49(3) 1.39(9)

Table 1: Summary of charge radii, magnetic moment, and axial mass from isovector form factors.

When two errors are given, the first is statistical and the second is systematic.
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